NAIP and Ipaf control Legionella pneumophila replication in human cells.

نویسندگان

  • Maya Vinzing
  • Julia Eitel
  • Juliane Lippmann
  • Andreas C Hocke
  • Janine Zahlten
  • Hortense Slevogt
  • Philippe Dje N'guessan
  • Stefan Günther
  • Bernd Schmeck
  • Stefan Hippenstiel
  • Antje Flieger
  • Norbert Suttorp
  • Bastian Opitz
چکیده

In mice, different alleles of the mNAIP5 (murine neuronal apoptosis inhibitory protein-5)/mBirc1e gene determine whether macrophages restrict or support intracellular replication of Legionella pneumophila, and whether a mouse is resistant or (moderately) susceptible to Legionella infection. In the resistant mice strains, the nucleotide-binding oligomerization domain (Nod)-like receptor (NLR) family member mNAIP5/mBirc1e, as well as the NLR protein mIpaf (murine ICE protease-activating factor), are involved in recognition of Legionella flagellin and in restriction of bacterial replication. Human macrophages and lung epithelial cells support L. pneumophila growth, and humans can develop severe pneumonia (Legionnaires disease) after Legionella infection. The role of human orthologs to mNAIP5/mBirc1e and mIpaf in this bacterial infection has not been elucidated. Herein we demonstrate that flagellin-deficient L. pneumophila replicate more efficiently in human THP-1 macrophages, primary monocyte-derived macrophages, and alveolar macrophages, and in A549 lung epithelial cells compared with wild-type bacteria. Additionally, we note expression of the mNAIP5 ortholog hNAIP in all cell types examined, and expression of hIpaf in human macrophages. Gene silencing of hNAIP or hIpaf in macrophages or of hNAIP in lung epithelial cells leads to an enhanced bacterial growth, and overexpression of both molecules strongly reduces Legionella replication. In contrast to experiments with wild-type L. pneumophila, hNAIP or hIpaf knock-down affects the (enhanced) replication of flagellin-deficient Legionella only marginally. In conclusion, hNAIP and hIpaf mediate innate intracellular defense against flagellated Legionella in human cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation.

Similar to Ipaf and caspase-1, the Nod-like receptor protein Naip5 restricts intracellular proliferation of Legionella pneumophila, the causative agent of a severe form of pneumonia known as Legionnaires' disease. Thus, Naip5 has been suggested to regulate Legionella replication inside macrophages through the activation of caspase-1. In this study, we show that cytosolic delivery of recombinant...

متن کامل

The neuronal apoptosis inhibitory protein (Naip) is expressed in macrophages and is modulated after phagocytosis and during intracellular infection with Legionella pneumophila.

Legionella pneumophila is an intracellular pathogen that causes Legionnaires' disease in humans. Inbred mouse strains are uniformly resistant to L. pneumophila infection with the notable exception of A/J, where the chromosome 13 locus Lgn1 renders A/J macrophages permissive to L. pneumophila replication. The mouse Lgn1 region is syntenic with the spinal muscular atrophy (SMA) locus on human chr...

متن کامل

Caspase-7 Activation by the Nlrc4/Ipaf Inflammasome Restricts Legionella pneumophila Infection

Legionella pneumophila (L. pneumophila), the causative agent of a severe form of pneumonia called Legionnaires' disease, replicates in human monocytes and macrophages. Most inbred mouse strains are restrictive to L. pneumophila infection except for the A/J, Nlrc4(-/-) (Ipaf(-/-)), and caspase-1(-/-) derived macrophages. Particularly, caspase-1 activation is detected during L. pneumophila infect...

متن کامل

Striking a Balance: Modulation of Host Cell Death Pathways by Legionella Pneumophila

Programmed cell death is considered the ultimate solution for the host to eliminate infected cells, leading to the abolishment of the niche for microbial replication and the ablation of infection. Thus, it is not surprising that successful pathogens have evolved diverse strategies to reprogram the cell death pathways for their proliferation. Using effector proteins translocated by the Dot/Icm t...

متن کامل

The mouse region syntenic for human spinal muscular atrophy lies within the Lgn1 critical interval and contains multiple copies of Naip exon 5.

Spinal muscular atrophy (SMA) is a relatively common, autosomal recessively inherited neurodegenerative disorder that maps to human chromosome 5q13. This region of the human genome has an intricate genomic structure that has complicated the evaluation of SMA candidate genes. We have chosen to study the mouse region syntenic for human SMA in the hope that the homologous mouse interval would cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 180 10  شماره 

صفحات  -

تاریخ انتشار 2008